
April 1967 Abdul Jabbar Abdullah 189 

STRATIFICATION OF CLOUD LAYERS IN A STABLE ATMOSPHERE 
ABDUL JABBAR ABDULLAH 

State University of New York at Albany, Albany, N.Y. 

ABSTRACT 

In this paper an attempt is made to explain the phenomenon of cloud stratification which is occasionally observed 
in the atmosphere. The 
atmosphere is assumed to consist of two layers of compressible air. The lower layer has a constant lapse rate, and 
the upper layer is isothermal. This assumption is found to be justifiable in 
the range of waves under consideration. It is found that waves whose phase velocities are of the order of 10m. sec.-* 
are capable of producing three strata whose elevations fall within the limits of observed altitudes of tropospheric 
clouds. The proposed mechanism is also found to be consistent with the observed heights of some stratospheric clouds. 

The leading thought is that these stratifications are caused by internal gravity waves. 

The quasi-static assumption is made. 

1. INTRODUCTION 

It is occasionally observed that clouds tend to appear 
in two or three discrete stratified layers separated by 
clear air. This is especially true when the atmosphere is 
stable. When the atmosphere is in unstable equilibrium 
these layers tend to  merge together and appear as deep 
cloud formations. 

This cloud stratification is quite common on the lee 
sides of mountains where it has been explained as a wave 
phenomenon. See, for example, Scorer [7]. However, this 
phenomenon is not limited to mountainous regions, al- 
though it is more frequent there. It is observed over flat 
areas where no mountains are in the neighborhood. It 
may even be observed over open oceans. A very striking 
view from an airplane flying at  high altitude is just these 
cloud stratifications which may be seen here and there 
when the clouds are limited in horizontal extent so that 
one can see through them. 

In spite of the fact that these stratifications must have 
been recognized for many decades, the present writer does 
not know of any theoretical mechanism that has been 
proposed to explain them and to describe the conditions 
under which they may be observed. The present com- 
munication may be considered as a first attempt in this 
direction. 

The leading thought in the present article is that these 
stratifications may also be the result of some atmospheric 
oscillations. It is obvious that clouds tend to form where 
upward vertical motion exists. Because the air is neces- 
sarily devoid of vertical motion at  the ground, a’ permanent 
nodal plane is imposed there. Other nodal planes parallel 
to the ground may form at higher levels depending upon 
the mode of oscillation executed by the atmosphere. 
The atmosphere may therefore be visualized as being 
divided into regions of vertical activity separated by these 

nodal planes. Moreover, the sense of vertical motion 
must alternate from one region to the other, being upward 
in one and downward in the next. The maximum vertical 
activity occurs at  the antinodes. Clouds are therefore 
expected to  form in every other region provided that the 
humidity and other meteorological elements are adequate 
for their formation. Clear regions may be expected to  be 
left where downward motion exists. 

The purpose of the present paper is to  study these 
oscillations and describe the conditions governing the 
separation of the consecutive antinodes. 

2. MATHEMATICAL ANALYSIS 

It will be assumed that the atmosphere consists of two 
compressible layers, a lower layer extending from the 
ground to the tropopause, and an upper layer resting on 
top of the first and extending to  infinity. The lower layer 
may be characterized by a constant lapse rate, and the 
upper layer may be isothermal. Both layers may be a t  
rest when they are undisturbed. Friction and the earth’s 
spherical shape may be neglected. It is required to study 
the free gravitational oscillations of such an atmosphere 
and, in particular, to describe the vertical motions asso- 
ciated with transverse waves traveling in the horizontal 
direction. 

The basic equations describing motion in this model, 
and pertaining to a fixed system of coordinates, have been 
derived by Lamb [5] and discussed by Taylor 191 in 
connection with the Krakatoa eruption of 1883. Funda- 
mentally the same problem has been treated by Haurwitz 
[l], [Z], who obtained a frequency equation for these waves 
under some simplifying assumptions. These equations 
have been generalized to  include the earth’s rotation and 
its spherical shape by Pekeris and others. See Wilkes 
[ll]. More recently Martyn [6] has discussed the same 
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problem in relation to waves in the ionosphere and 
troposphere. Sekera [SI has studied the effect of a wind 
shear on these waves when the earth’s rotation and its 
spherical shape are neglected. Kuo [4] has discussed the 
stability conditions in a Couette flow. In  the present 
treatment some numerical computations are made 
regarding vertical motions. The main point in view is 
to  compute the vertical separations between the antinodes 
of the layers resulting from the oscillations. Lamb’s 
notation and his general method of analysis are closely 
followed. One point of departure between the present 
analysis and that of Lamb is the introduction of the quasi- 
static hypothesis at  the beginning of the analysis. This 
assumption is found to simplify the mathematical analysis 
considerably. At the same time, as will be shown in the 
Appendix, the introduction of this assump tion is equiva- 
lent to  neglecting some terms which are of higher order 
of magnitude than the retained terms. This assumption 
may therefore be justified. 

Let the origin of a Cartesian system of coordinates be 
taken at  the tropopause, the z-axis pointing upward and 
the x-axis horizontal and pointing in the direction of 
wave motion. The disturbed motion may be assumed 
to be independent of the y-direction. The ground may 
be assumed horizontal and a t  constant depth, h, below 
the tropopause. The undisturbed quantities may be 
independent of the horizontal directions. 

The linearized equations describing the perturbed 
motion are the following. 

The equation of motion is 
See Hrturwitz [2]. 

1 %+Q at .Vq+q . V Q + 2 w X q = - -  Po  vp+; VP,, (1) 

the equation of continuity is 

and the equation of piezotropy is 

where 

(4) 

is the local speed of sound. In these equations q, y ,  p are 
the perturbation velocity, pressure, and density re- 
spectively, Q ,  Po, p o  are the corresponding undisturbed 
quantities, w is the angular velocity of the earth’s rotation, 
y is the ratio of the specific heats for dry air, R is the gas 
constant, and T i s  the temperature. 

As already mentioned, in the present analysis the 
a following assumptions are made: (a) Q=O and -- 

(b) the change of state during the vibrations is adiabatic, 
ay- O ,  

and (c) the hydrostatic relation holds for both the un- 
disturbed and the total disturbed motions. 

With these assumptions the previous equations yield the 
following : 

1 
Po 

ut-jv=--p, 

Here u, v, and w are the components of velocity; f = 2 w  
sin0 is the Coriolis parameter. The subscripts b ,  x, and z 
indicate partial differentiations. 

Upon the elimination of v, p ,  and p the following equa- 
tions are obtained: 

Together with (10)) equations (11) and (12) form u 
closed system from which u, w, and x may be determined. 

Because interest is centered around transverse waves 
that travel in the horizontal direction, the following 
form of solutions will be assumed: 

When these values are inserted in the last three equa- 
tions the following equations are obtained: 

(14) 
ik 
U2 

u=-- (CZX-gw) 

The argument (2) has been dropped from the functions 
u, w, and x since no confusion is expected. 

The problem now reduces to solving (16) for x ,  subject 
to  the proper conditions, then substituting in (15) to  
obtain w. 

I n  the isothermal stratosphere T=To, u constant, and 
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c2=yRTO=c~,  a constant. 
following form: 

Hence equation (16) takes the 

(18) c%xIz-ygxp+- g2F (y-l)X=O. 
U2 

For the troposphere, let the constant lapse rate be r. 
Then T=T,-rz and c2=yR(To-rz). Let 

and l ? a = g B j  the adiabatic lapse ra.te. r R  

Insertion of these quantities in (16) reduces it to the 
following form: 

( ~ o - r ~ ) ~ z ~ - r ( ~ + 2 ) ~ z + -  gk2 (r,-r)x=o. (20) 
U2 

Upon making the following change of independent variable 

equation (20) takes the form: 

It is clear that the natures of the solutions of equations 
(18) and (22) depend upon the sign of the quantity 6’. 

Thus two distinct cases will be discussed. The first case 
is that in which v>f so that v’>>f” and uz=y2. The 
second case is that in which v<f so that v2<<.f and 
u2 = -y. 

For waves whose phase velocities are of the order of lo3 
cm. set.-', and in the middle latitudes where f is of the 
order of set.-', it can be seen that the first approxi- 
mation holds for wavelengths of the order of 60 km. or 
less, whereas the second approximation holds for longer 
waves. 

3. WAVES OF THE FIRST KIND IN AN ISOTHERMAL 
ATMOSPHERE 

Upon replacing u2 by v2 and noting that v!k=V is the 
phase velocity of the waves, equations (15) and (18) take 
the following forms respectively: 

c2V2 1 
9 9 

w=+ xz+-(c~-yV2)x 

and 

(24) c%,,-gyx,+-( Y2 -l)x=O 
v2 

The appropriate solution of equation (24) that satisfies 
the boundary condition of making the energy transport 
upward is (see Weekes and Wilkes [lo]) : 

where 

and D1 is a constant of integration. 

motion in the vertical is t,hat b must be real. 
dition is realized if the following inequality is satisfied: 

The condition to be satisfied in order to obtain periodic 
This con- 

v 2(y--1)”* -< Y CO 

The value of y for dry air is 715. Insertion of this 
value in equation (27) gives the following limit for V/c,: 

- 0.9. -<-- v 2410 
co- 7 

This condition is always satisfied for waves whose 
velocities are in the neighborhood of the magnitudes 
normally observed for cloud movements. 

Upon substituting from equation (25) in (23) the real 
part of w is found to be 

The vertical velocity therefore disappears a t  certaF 
nodal planes whose heights z, above the tropopause are 
given by the relation 

tan (2 zs)=f [($J-z] 
Hence 

-e +ST; s=o, i , 2 .  . . (29) 6 s - o  

where eo is the angle corresponding to s=O. Thus it 
appears from equation (29) that the isothermal strato- 
sphere may be divided into horizontal layers in which 
vertical velocities esist, and which are separated by nodal 
planes where vertical velocities vanish. The sense of 
vertical motion naturally alternates from one layer to  the 
next. Because clouds are expected to  form where the 
vertical motion is upward, the cloud strata that may 
correspond to these motions are separated a t  double the 
distance between two nodal planes. Hence the separa- 
tion, 1, between consecutive cloud layers is given by the 
following relation 

27rc: 1=2(zs+1-2 )--. 
a - gb 

Figure 1 is a plot of the separation 1 against the non- 
The temperature of the isother- 

The 
dimensional ratio V/co. 
mal stratosphere has been assumed to be 216O K. 
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speed of sound corresponding to this temperature is 
2.91X104 cm.. set.-' It may be seen from this figure 
that the separation 1 is zero for wave velocity V=O, 
which is the case of no wave motion. 1 increases monoto- 
nously as V/c, increases, and becomes infinite when 
V/c, attains the limiting value of 0.9. Two cases may be 
of special interest. First, for a slowly moving wave 
whose velocity is of the order of 0.1 co, it is found that 1=8.6 
km. If the tropopause is a t  a height of 11 km., and if it 
coincides with a maximum vertical velocity, the usual 
case as will be shown later, then the first cloud stratum 
that may appear in the stratosphere will be a t  an elevation 
of 19.6 km. This is of the same order of magnitude as 
that of the elevations of nacreous clouds which are 
known to be slowly moving clouds. See [3], p. 385. Next 
consider a fast moving wave whose velocity is in the 
range % c,, to  95 e,,. From figure 1 the values of 1 that 
correspond to this range are found to lie between 53 and 
85 km.. Hence the first cloud stratum in the stratosphere 
must appear a t  an elevation lying in the range 64 to 96 
km. This again is of the same order of magnitude as that 
of the elevations of noctilucent clouds which are known 
to be fast moving clouds. See [3], p. 392. 

4. WAVES OF THE FIRST KIND IN A TROPOSPHERE 
WITH CONSTANT LAPSE RATE 

For the troposphere, where the lapse rate r has been 
This equation assumed constant, equation (22) holds. 

may be written in the form 

Txrr+(nS2)xr+ mx=O (22a) 
where 

Upon making the €allowing changes of variables 

and 

equation (22a) becomes 

9” +- 1 9! +[ 1 --;.-I (n+1lZ !b=o 
9 (33) 

where primes indicate differentiation with respect to q .  
Equation (33) is in the typical form of Bessel equation. 
The solution is 

where J and Y are the two kinds of Bessel functions, and 
AI and Bl are the two constants of integration. 

Upon inserting equation (34) in (32), then using equa- 
tjion (15), the following values are found for x and w: 

The boundary condition at  the ground is that the verti- 
cal velocity w must vanish. That is 

w=O; at z=-h. (37) 

The value of the variable 9 a t  the ground may be ob- 
tained from equations (32) and (21), namely, 

9+,=[4m (:+h)]”’, a t  z = - ~  (38) 

Substituting from equations (37) and (38) in (36) yields 
the following relation between the constants Bl and AI : 

[ ZmV” g s-hJ,+1(11-n)-J,(9-n)] 

* (39) 
B k=cl=- 

Equation (36 )  now takes the form 

Equation (40) is identical with that obtained by 
Taylor [9] who derived it by making some approximations 
rather than by using the hydrostatic assumption. 

Let the quantity + be defined as 

From this and equation (40) the following is obtained: 

where j and y are the spherical Bessel functions of the two 
kinds. It may be seen from equation (41) that the func- 
tion $ varies with w, such that the zeroes of $ are also the 
zeroes of w. A plot of 4 against z is also an indication of 
the variation of w with z. 
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FIGURE 1.-A plot of the separation between cloud strata, I ,  against V/co in an isothermal atmosphere. I is measured in kilometers and 

V/co is a dimensionless number. The temperature of the isothermal atmosphere is assumed to  be 216" K. 

5. THE EIGENVALUES OF V 

In  order to plot the values of 4, as given by equation 
(42), against height it is first necessary to find the per- 
missible values that V may take, namely the eigenvalues 
of this function. To do so the solutions for the strato- 
sphere and the troposphere must be fitted together. It is 
clear that the boundary conditions, necessitated by the 
continuity of pressure and vertical velocity a t  the tropo- 
pause, are 

and (43) 

where the subscripts 1 and 2 refer to the troposphere and 
stratosphere respectively. It can easily be shown that, 
when the temperature is continuous across the tropopause, 
the second condition is equivalent to 

xl=x2; a t  z=O. (44) 

Upon combining these conditions with equations (25) , 
(28), (35), arid (40), and making use of the relation (39), 
the following equation is obtained : 

~ 

where To is the temperature a t  the tropopause and co is the 
speed of sound corresponding to that temperature. I t  is 
to be noted that the quantity C1, as given by (39) is u 
function of V. 

Equation (45) is to be satisfied by the eigenvalues of V. 
The num-erica1 procedure in finding the roots of this 

V c 
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equation is to  let the left-hand side equal to a function 2. 
The quantities To, r, r,, and hence n, are assumed to be 
given. Then, V is given some arbitrary values ranging 
between 0.2 X lo3 and 26 X lo3 cm. set.-' and the corres- 
ponding values of 2 are found. The zeroes of Z are then 
found, at  the places where there is a change of sign, by 
triple interpolation. 

In  the numerical example considered here the tempera- 
ture of the tropopause To was assumed to be 216"K., the 
height of the tropopause 11.594 km., and the lapse rate r 
was taken as 4.88"C./km.. which is half the adiabatic lapse 
rate r,. The value of the index n that corresponds to 
these values is 6 .  With these values the eigenvalues of V 
were found to get more crowded as the magnitude of V 
decreases. This is especially true between 10 m. set.-' 
and 2 m. set.-' At lower values one may be justified in 
considering them. as if they constitute a continuous 
spectrum. In particular it was found that the following 
are eigenvalues of V :  1.01 X lo3, 2.018 X lo3, and 5.096 X 
lo3 cm. set.-' In the discussion to follow, these values 
are rounded out to 1, 2, 5 X lo3 respectively. 

6. NUMERICAL DETERMINATION 
OF THE ELEVATIONS OF CLOUD STRATA 

Equation (42) may now be used to determine the 
heights of the nodes and antinodes of the function 9, 
corresponding to any selected eigenvalue of V. These 

nodes and antinodes are the same for the vertical velocity 
w as has already been stated. 

In  the example worked out here the same numerical 
values have been assumed as in the last section. Figures 
2a, b, and c are plots of 4 against the elevation z+h for 
the phase velocities 10 m. set.-', 20 m. set.-', and 50 
m. sec.-l, respectively. I t  may be seen from these figures 
that the troposphere is divided into distinct regions of 
vertical activity separated by nodal planes. Thus when 
V=10 m. set.-', figure 2a provides for three regions with 
upward vertical velocities where cloud strata may form. 
The antinodes of these regions occur at  the elevations 2, 
6 ,  and 10 km. All of these lie within the observed alti- 
tudes of low, medium, and high clouds respectively. 

At the faster phase velocity of 20 m. set.-', figure 2b 
shows that there can be only two regions with upward 
vertical velocities, hence only two cloud strata may form 
a t  this speed. At the still greater velocity of 50 m. set.-', 
figure 2c shows that only one stratum may form. 

I t  thus appears that, according to the mechanism 
proposed in the present communication, the number of 
cloud strata depends principally upon the phase velocity 
of the waves excited in the atmosphere. This number 
increases as the phase velocity decreases. 

In  order to test the effect of the lapse rate upon the 
possible number of strata the same problem was solved 
numerically for a lapse rate of 6.21" C./km. The eigen- 
values of V a t  the lower end of the spectrum are not 

~ = 5 .  10~cm/sec. V= 103cm/sec. r= 4.88 T / k m  v= 2. a3cm /sac. 

FIGURE 2.-A plot of the function 6 against elevation in an atmosphere having a constant lapse rate I'=4.88" C./km. The temperature 
Curve (a) corresponds to V=lW cm./sec., (b) corresponds to of the tropopause is assumed to be 216" K., and its height 11.594 km. 

V=2XlCP cm./sec., and (c) corresponds to V = 5 X l B  km./sec. 
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changed appreciably for this case, and the same rounded 
values of 10, 20, 50 m. set.-' were used for the sake of 
comparison. Figures 3a, b, and c are the result. It 
may be seen from these figures that the altitudes of the 
possible strata occur at  about the same values as in the 
previous case, except that these altitudes are now slightly 
shifted upward. It is therefore surmised that the con- 
clusion drawn in the last paragraph remains valid, namely 
that the number of strata is mainly a function of the 
phase velocity. 

7. WAVES OF THE SECOND KIND 

In this case the assumption is made that uz=-fz. 
For the isothermal stratosphere equation (18) takes the 
form 

(46) Co2Xzz- ygx,-- s2p f' ( r - l ) x = O .  

The solution for this equation is: 

x=Dzerz 
where 

(47) 

and D2 is a constant of integration. 
Because the radical is always real, the negat,ive sign 

of the am.biguity has been chosen in order to make the 

Upon substituting from equation (47) in (15) the 
following value is obtained for the vertical velocity w: 

'4+rf" Y G r  err* 

gk2 -- g2k2 1 (49) 

I t  is obvious from equation (49) that no nodal planes 
c,an exist in this case since w is not a periodic function. 

For the troposphere, equation (22) takes the form 

@rr+ (n+2)Xr-pX=O (50) 
where 

Upon making the following c,hanges in variables 

and 

equation (50) takes the form: 

where primes indicate differentiation with respect to A. 
The solution of equation (53) is: 

variables approach zero at  great, heights. $b=AJn+l(X)fB2K&+I(X) 

v= I ~ c l n / o c .  r= 6.21 %/km v.2. t$cm/wc v=s.Io%II/~~. 

FIGURE 3.-Same as figure 2 with r=6.2lo C./km. 
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where I and K are the modified Bessel functions of the 
two kinds. 

Upon substituting from equation (54) in (52) then using 
equation (15) and the boundary condition (37), the 
following values for x and w are obtained: 

and 

where 

The subscript -h indicates that the value at  z=-h 
should be taken. 

The condition for nodal planes in 20 is, from equation 
(56) : 

Because the functions I and K are monotones, behaving 
like exponentials, no real values of X can satisfy equation 
(58) except LA, which is the ground level. Hence no 
nodal planes above the ground can exist in waves of the 
second kind. It is therefore felt unnecessaiy to formulate 
the eigenvalue problem for this case. The conclusion 
arrived at here means, in turn, that long waves belonging 
to t4he second kind cannot give rise to stratified cloud 
layers of the nature stipulated. Any stratification that 
iiiay be observed in association with these long waves 
must be explained by other mechanisms, and not by 
simple free gravitational oscillations. 

8. CONCLUSIONS AND FURTHER REMARKS 
On the basis of the above-cited analysis the following 

conclusions and remarks may be made: 
(1) Atmospheric oscillations whose frequencies are 

greater than the Coriolis parameter may be associated 
with the formation of cloud strata. I n  these short-wave 
oscillations gravity is the main controlling force. The 
heights of the strata that may be associated with these 
oscillations in an isothermal stratosphere are in qualitative 
agreement with the observed heights of some cloud 
formations that appear in the upper atmosphere. 

Short-wave oscillations may also account for the strati- 
fications of clouds that are occasionally observed in a 
stable troposphere. In  this case, it is found that fast 
moving waves of phase velocities 50 m. set.-' or more may 
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give rise to one stratum only. Slower waves may produce 
more strata, so that at  a velocity of the order 10 m. set.-' 
there may be three strata generated by this mechanism. 
The elevations of these strata fall within the limits of 
the observed elevations for tropospheric clouds. 

(2) Variation of the lapse rate of the troposphere does 
not produce appreciable changes in the qualitative results, 
although it may result in slight changes in the actual 
heights of the most favorable places for cloud formation. 

(3) Oscillations whose frequencies are less than the 
Coriolis parameter, and which belong to long wave- 
lengths, are not capable of producing cloud strata, either 
in the isothermal stratosphere or in the troposphere. 
In this case a vertical column of the atmosphere vibrates 
in phase with itself so that no nodal planes can exist. 
Cloud stratification that may be observed in association 
with these waves must be explained by other mechanisms, 
such as the bodily lifting of air masses over frontal surfaces. 

(4) In  order to simplify the mathematical analysis the 
hydrostatic assumption has been made in the present 
treatment. This assumption will be justified in the 
Appendix. However, this assumption imposes certain 
limitations on the phase velocities which may be con- 
sidered. The discussion therefore was not carried out 
for velocities less than 10 m. see.-' 

(5 )  In the present model the undisturbed atmosphere 
was assumed to be stagnant. A basic current with vertical 
wind shear may result in some significant modifications 
(see Sekera [SI). This however, was not attempted in 
the present article since the main object has been to 
demonstrate the feasibility of the basic mechanism 
suggested here. 

APPENDIX 
ON THE VALIDITY OF THE HYDROSTATIC ASSUMPTION 

In  order to test the validity of the hydrostatic assump- 
tion, and to bring out the nature of the approximations 
implied by introducing it, it may be instructive to  derive 
the same basic equations without making use of this 
assumption. Equations (5)-(10) will then be 

1 
PO 

u,- fv= -- pz 

1 wt = -- p,- fJp 
Po 

P t  + WPO,+ POX'O ( 8 4  

c2( p t + w o r )  =pr -wgpo ( 9 4  

x = U,i- w, (loa) 

The only difference between these and the corresponding 
equations (5)-(10) appears in (7a) which is now written to 
include the vertical accelerations. 
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Upon eliminating v, p ,  p ,  and .ic the following equations 
are obtained 

( v2~‘-k2g2) W= g[yu2- k 2 ~ 2 ] ~ - ~ 2 u 2 ( d ~ / d ~ )  (59) 

and 

+ v 2 ( l - F ) } X = 0 .  (60) 

Comparison of these two equations with the corre- 
sponding equations ( 1 5 )  and ( 1 6 )  shows that (a) in equation 
(59) there is an additional term, v’u’, in the coefficient of 
w, and (b) in equation (60) there is an additional term, 

v2 (1 -7) in the coefficient of x .  I t  will now be shown 

that these terms are negligible in comparison with the 
retained terms, for the range of wcves we are considering. 

For the waves of the first kind 2 = v 2  and therefore 
v2u2=v4. For the waves of the second kind u 2 = - f 2 ,  
and in the order of magnitudes considered here f2<v2.  
Hence, if i t  could be shown that v4<< k2g2, i t  follows 
that this approximation holds much better for u2vz in 
general. 

The orders of magnitude of the parameters involved 
in the present treatment are: v=O set.-'), k= 
0 ( lo+  cm.-’). 
I t  is therefore clear that k2g2 is six orders of magnitude 
g-eater than v2uz which makes the latter term negligible 
in comparison with the first. In general if v4<k2g2 
then vV<g. 

For V=O ( lo3 ) ,  v must be of the order of lo-‘ or less 
to make the neglected term two orders or more smaller 
than the retained term. This is always true in the range 
considered here. 

Next consider the relative magnitudes of the t e r m  in 
the coefficient of x of equation (60). The first term is 
(g2k2/u2) (y- 1 ) .  The order of magnitude of this term 
is the same as that of g2k2/v2 or g2/V’, which is, for 
V = 1 0 3 ,  of the order of 10°=l. Whereas the term u2 
(1 -Pc2 /v2 )=v2-k2cZ .  The first part, v2, is always smaller 
than 1. The second, i.e., k 2 c 2 = 0  . 10g)=O 
which is three orders of magnitude smaller than the 

Hence, v 4 = 0  (lo-’*) und k 2 g 2 = 0  

retained term; hence i t  may be neglected. In  general if 
k2c2<g2/VZ, then k2< 10-3/V2. 

In  
other words this approximation may be made for wave- 
lengths of the order of 1 m. even if the velocity of these 
waves remains as high as 10 m. set.-' It is therefore 
clearly demonstrated that the hydrostatic assumption is 
more than justified for the range of values of interest in 
the present investigation. In  addition, the introduction 
of the hydrostatic assumption has the advantage of 
simplifying the mat#hematical analysis considerably. 

For V of 0 ( 1 0 3 ) ,  k must be smaller than 3XlO-*. 
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